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Abstract
Drought monitoring and early warning (M&EW) systems are an important component of
agriculture/silviculture drought risk assessment. Many operational information systems rely mostly
on meteorological indicators, and a few incorporate vegetation state information. However, the
relationships between meteorological drought indicators and agricultural/silvicultural drought
impacts vary across Europe. The details of this variability have not been elucidated sufficiently on a
continental scale in Europe to inform drought risk management at administrative scales. The
objective of this study is to fill this gap and evaluate how useful the variety of meteorological
indicators are to assess agricultural/silvicultural drought across Europe. The first part of the analysis
systematically linked meteorological drought indicators to remote sensing based vegetation indices
(VIs) for Europe at NUTs3 administrative regions scale using correlation analysis for crops and
forests. In a second step, a stepwise multiple linear regression model was deployed to identify
variables explaining the spatial differences observed. Finally, corn crop yield in Germany was chosen
as a case study to verify VIs’ representativeness of agricultural drought impacts. Results show that
short accumulation periods of SPI and SPEI are best linked to crop vegetation stress in most cases,
which further validates the use of SPI3 in existing operational drought monitors. However, large
regional differences in correlations are also revealed. Climate (temperature and precipitation)
explained the largest proportion of variance, suggesting that meteorological indices are less
informative of agricultural/silvicultural drought in colder/wetter parts of Europe. These findings
provide important context for interpreting meteorological indices on widely used national to
continental M&EW systems, leading to a better understanding of where/when such M&EW tools can
be indicative of likely agricultural stress and impacts.

Introduction

Drought monitoring and early warning (M&EW)
is an important component of agricultural and sil-
vicultural risk management. Operational M&EW
systems for drought hazard assessment often cover
large, continental scales. Examples include the
European Drought Observatory (EDO: edo.jrc.ec.
europa.eu/), the US Drought Monitor (USDM:
http://droughtmonitor.unl.edu) and other regions
globally (www.drought.gov/gdm/). Meteorological

indicators such as the Standardized Precipitation
Index (SPI) (McKee et al 1993) are widely used in
these systems. Stakeholder participation has started a
process to improve drought information systems to
better consider drought impacts and provide possi-
bilities to downscale to local conditions (Collins et al
2016, Lackstrom et al 2017). Meteorological drought
does not necessarily equate to agricultural drought,
particularly at broad scales, given differences in
drought susceptibility (e.g. plant-specific vulnerabil-
ity, soil water holding capacity, irrigation, and other
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agricultural management practices). Better knowledge
and approaches are therefore needed for the repre-
sentation of regional to local impacts on vegetation.
Several agricultural drought indicators exist that aim
for direct characterization of such impacts (Sivaku-
mar et al 2011, Zargar et al 2011). Among those,
remotely sensed vegetation indicators (VIs) are eas-
ily accessible and offer the most direct possibility to
assess impacts on crops and forest, at high spatial and
temporal resolution.

A recent review on drought indicators used in
operational drought M&EW systems revealed that
while the SPI and other precipitation-based indica-
tors are widely used, there is generally less uptake
of agricultural drought indicators including VIs into
M&EW (Bachmair et al 2016). One reason may be
the need for long time series of drought related
variables to determine anomalies (de Leeuw et al
2014). VIs generally cover shorter historic time periods
than precipitation and hence will also have different
(shorter) climate reference periods. Other reasons may
be that vegetation stress does not necessarily translate
to true losses and wider drought impacts and vege-
tation stress may also be caused by other influences
than drought. According to the EDO fact sheets, the
use of VIs in M&EW thus requires a combination
with meteorological information to guarantee causal-
ity. These challenges may hinder direct implementation
of VIs into M&EW. Research on the relation between
commonly used meteorological indicators and VIs,
including factors influencing this relation, will help
to identify regions or landscapes where these meteo-
rological indicators characterize vegetation stress well,
and where there are areas where further indicators
may need to be considered for comprehensive drought
M&EW and agricultural risk assessment.

A number of studies have assessed the mutual rela-
tions between meteorological and agricultural drought
indicators including remotely sensed VIs. Some stud-
ies further tested the link to crop yield. Most of
them deal with a case study region and a subset
of indicators, e.g. the relation between different VIs,
or between meteorological variables and one VI, or
between VIs and crop yield (Balaghi et al 2008, Choi et
al 2013, Gouveia et al 2009, Gu et al 2007, Lu et al
2015, e.g. Zhou et al 2012). Studies at the scale
of continental M&EW systems have mostly focused
on North America (Bolton and Friedl 2013, Ji and
Peters 2003, Quiring and Ganesh 2010, Quiring and
Papakryiakou 2003) and have tended to be specific to
particular types of indicators or crops. A few global-
scale studies have assessed the link between climate
variables and vegetation response (Vicente-Serrano
et al 2014, 2013, Wu et al 2015).

For Europe, few studies have addressed the
link between meteorological drought and agricultural
drought at the large, pan-European scale. The corre-
lation between various drought indicators (including
VIs) and meteorological drought indices such as the

three month Standardized Precipitation Index (SPI-3)
(Peled et al2010) or the 12 month Standardized Precip-
itation Evaporation Index (SPEI-12) (Ivits et al 2014)
were found to have spatially variable patterns across
Europe. These studies considered a continental-scale
domain, but they focused on broad regional patterns
identified using cluster analysis. In the two large-scale
drought M&EW systems that exist for Europe that offer
several meteorological indicators and VIs (European
Drought Observatory: http://edo.jrc.ec.europa.eu/;
Drought Management Centre for Southeastern
Europe: www.dmcsee.org/en/home/), their indices for
the ‘watch level’ are based on a compromise—an index
that is overall best-correlated to agricultural drought
(SPI-3 in studies by e.g. Ji and Peters 2003, Rossi and
Niemeyer 2012); in addition the EDO combined indi-
cator uses the SPI-1 to cover the extremes and a VI to
indicate the ‘alert’ stage (EDO fact sheets).

Due to the multi-national and climatically diverse
setting, Europe includes a range of crops and agri-
culture and silvicultural practices. An alternative user
perspective of M&EW systems could be to seek
guidance to ‘custom-pick’ a regionally best-suited
meteorological indicator, but so far there has been
less emphasis placed on understanding what these
systems mean in terms of agricultural impacts on
the ground. A study linking meteorological indica-
tors of various time scales to reported agricultural
drought impacts found longer time scales being more
suitable in European countries with irrigation agricul-
ture that relies on reservoirs or groundwater (Stagge
et al 2015). Especially at the local scale, such varia-
tions in vulnerability and response times of drought
impacts therefore affect the suitability of meteorolog-
ical drought indicators. To improve the basis for risk
management at smaller scales, a pan-European study
of local-scale linkagesbetweenmeteorological andagri-
cultural drought will be beneficial. More systematically
than previous studies, we therefore compare meteoro-
logical indicators that accumulate precipitation deficit
for a range of time scales to two commonly used
VIs, namely the Vegetation Condition Index (VCI)
and the Vegetation Health Index (VHI) (Kogan 1995),
also distinguishingbetweendifferent vegetation classes.
More specifically, we

• test the variation of accumulation period for which
SPI and SPEI is best correlated with the remotely
sensed VIs (VCI and VHI) across Europe and
between crop versus forest,

• investigate which geographical variables explain
spatial patterns of correlation between local-scale
meteorological indicators and VIs, and

• assess the correlation between the VIs and crop yield
for one example country (Germany: one of the few
countries having readily accessible yield data at local
scale), to test which VI is more closely linked to
agricultural impacts.

2

http://edo.jrc.ec.europa.eu/
http://www.dmcsee.org/en/home/


www.manaraa.com

Environ. Res. Lett. 13 (2018) 034042

Figure 1. Overview on EU NUTS3 regions (NUTS = Nomenclature of Territorial Units for Statistics). Light yellow regions are not
included in EUROSTAT NUTS3 region map version 13.

Our investigation therefore looks in particular at
the validity of drought indicators used over large areas
with strong spatial contrasts. The analysis also differs
from other studies in that it was carried out at the
administrative scale of the EuropeanUnionNomencla-
ture of Territorial Units for Statistics (NUTS3) regions.
Crop yield statistics are commonly aggregated at this
spatial scale. It thus represents the scale at which risk
management can be carried out.

Data

Meteorological drought indicators and VIs from
satellite imagery form the basis of this study. As mete-
orological indicators we selected SPI and SPEI for the
accumulation periods 1–6, 9, and 12 months (here-
after referred to as SPI-n or SPEI-n) with monthly
resolution for the period 2000–2015. SPI and SPEI
are statistical indicators that compare the total pre-
cipitation (SPI) or climatic water balance (SPEI) at a
particular location during a period of n months with
its multiyear average (Sergio M Vicente-Serrano et al
2010, Zargar et al 2011). SPI is therefore based solely
on precipitation anomaly compared to the long-term
average for a given length of period, whereas SPEI
also takes into account the evaporative demand. SPI
and SPEI are based on E-OBS gridded precipitation
and temperature data (v12.0, 0.25◦ spatial resolu-
tion) (Haylock et al 2008). For detailed explanation
of the calculation of the SPI and SPEI see McKee
et al (1993) and Vicente-Serrano et al (2010). Evap-
otranspiration was determined using the Hargreaves
formula (Hargreaves 1994). For SPI and SPEI calcula-
tion we used the R package ‘SCI’ (Gudmundsson et al
2014). The monthly time series per grid cell were

aggregated at the NUTS3 region level by spatial averag-
ing (see figure 1 for size of NUTS3 regions).

For VIs, time series of VCI and VHI for
2000–2015 were computed based on MODIS NDVI
(MOD13C2, 0.05◦) and Land Surface Temperature
(LST) (MOD11C3, 0.05◦) at a monthly time-step to
match SPI and SPEI temporal resolution, and then
spatially averaged at the NUTs3 region scale. VCI is
only based on the Normalized Difference Vegetation
Index (NDVI),whereasVHI is calculatedasacombina-
tion of VCI and Temperature Condition Index (TCI),
therefore incorporating the effect of heat induced stress
in plants. The equations to calculate VCI, TCI and
VHI are described in the supplementary method 1
available at stacks.iop.org/ERL/13/034042/mmedia.

Gridded VIs data and time series are downloadable
from CEH Environmental Information Data Centre
(http://eidc.ceh.ac.uk/, Tanguy et al 2016a, 2016b).

To distinguish between crop and forest cover we
usedMODISLandCoverTypedata (MCD12C1,0.05◦)
for the year 2012. This datasets distinguishes 17 land
cover classes. Our class ‘crop’ subsumes the classes
12 and 14 (‘Croplands’ and ‘Cropland/Natural vege-
tation mosaic’); our class ‘forest’ comprises the forest
classes 1–5 without any differentiation of forest types
(see figure 2 for fraction of crop and forest area per
NUTS3 region). While there is inevitably diversity
in forest responses, this is a necessary compromise
given the pan-European scale of the study.

The following geographical variables per NUTS3
region were used to investigate their effect on the
relation between meteorological indicators and VIs:
latitude (LAT), longitude (LON), NUTS3 region
area (A), elevation (E), annual/winter/summer pre-
cipitation totals (P), mean annual/winter/summer
temperature (T), soil texture class (SX), percentage of
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Figure 2. Fraction of crop (left) and forest (right) area per EU NUTS3 region.

Table 1. Overview on geographical variables per NUTS3 region.

Geographical variable Abbreviation Spatial aggregation Source

Latitude LAT centroid of NUTS3 region Eurostat (2013)a

Longitude LON centroid of NUTS3 region Eurostat (2013)a

NUTS3 region area A – Eurostat (2013)a

Elevation E mean; range European Environmental Agencyb

Annual/winter/summer
precipitation

P sum E-OBS gridded data v12.0,0.25◦

Mean
annual/winter/summer
temperature

T mean E-OBS gridded data v12.0,0.25◦

Soil texture class (five
classes from coarse to very
fine)

SX majority European Soil Databasec

Irrigated area IA % Eurostat LUCASd

Crop area CA % MODIS Land Cover Type Data (MCD12C1, 0.05◦) for 2012
Forest area FA % MODIS Land Cover Type Data (MCD12C1, 0.05◦) for 2012

a http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts#nuts13.
b http://www.eea.europa.eu/data-and-maps/data/digital-elevation-model-of-europe.
c http://eusoils.jrc.ec.europa.eu/ESDB_Archive/ESDB/index.htm.
d http://ec.europa.eu/eurostat/statistics-explained/index.php/LUCAS_-_Land_use_and_land_cover_survey.

irrigated area (IA), and percentage of crop (CA) or
forest area (FA). See table 1 for details.

Crop yields for Germany were available as annual
data for several crops for the timeperiod2000–2015and
these data were assembled from the German regional
database (www.regionalstatistik.de/genesis/online).
We focused on corn yield in this study given a high
fraction of corn cultivation area in Germany and a
shorter growing season than for winter grains. Annual
crop yield time series were de-trended with a linear
trend equation per NUTS3 region (e.g. Quiring and
Papakryiakou 2003, Tadesse et al 2015), hereafter
termed ‘crop yield departure’.

Methods

A correlation analysis was carried out between monthly
SPI-n, SPEI-n and the VIs (VCI and VHI) time
series from 03/2000 to 12/2015. Only months of
the growing season were selected for analysis (here-
after termed ‘censored time series’). We assumed a
uniform growing season from April until October,

which was selected after testing other approaches
(see supplementary method 2). Pearson correlation
coefficients were calculated between censored time
series of SPI-n and VCI, SPI-n and VHI, SPEI-n and
VCI, and SPEI-n and VHI. Since there is a degree
of temporal autocorrelation in the VI and SPI and
SPEI time series of longer accumulation periods, which
increases the likelihood of Type I error, we corrected
the number of degrees of freedom using the mod-
ified Chelton method when computing significance
levels (Pyper and Peterman 1998). For Germany, we
additionally calculated Pearson correlation coefficients
between annual time series of corn yield departure
and VIs of August; note that we tried different annual
VI variables (minimum and mean over the growing
season, VIs of different months) but VIs for August
provided best results.

To assess which geographical variables (standard-
ized prior to analysis) explain spatial patterns of
correlation between SPI or SPEI and VIs we deployed
a stepwise multiple linear regression model (inde-
pendent variables: geographical variables, response
variable: correlation coefficient per NUTS3 region).
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Figure 3. Top six panels: correlation coefficients between VCI and selected SPI and SPEI accumulation periods for crop and forest.
The color scale ranges from −0.9 to 0.9. White dots in the centroid of NUTS3 regions indicate p-values < 0.05. Bottom two panels:
indicator showing highest correlation with VCI.

For the geographical variables NUTS3 region area (A)
and percentage of irrigated area (IA) the data was
log-transformed (log(y + 1)). Only NUTS3 regions
with complete data for all geographical variables were
retained foranalysis andNUTS3regionsofoverseas ter-
ritories were excluded (n = 1148 after these exclusions).
Since annual/winter/summer T, E (mean/range), and
LAT are correlated (Variance Inflation Factor > 5),
we only kept mean annual T out of these vari-
ables. Additionally, partial correlation coefficients
and the relative importance of the explanatory vari-
ables were calculated for all variables selected in the
stepwise model; relative importance is based on the R
package ‘relaimpo’ (Grömping 2006).

Results

The results of the correlation analysis between mete-
orological indicators and VIs reveal both spatial
differences in strength of correlation between SPI-n
or SPEI-n and VIs, and differences among accumu-
lation periods of SPI-n or SPEI-n. Also, there are
differences in correlation of VCI versus VHI. The
maximum strength of correlation for all drought indi-
cator combinations, NUTS3 regions, and vegetation
classes is 0.81

For crops, SPI and SPEI accumulation periods of
three and four months show highest correlation with
VCI (figure 3 left panels). For an accumulation period

5
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Table 2. Results of the stepwise linear regression model, partial correlation coefficients, and relative importance of the selected geographical
variables; for abbreviations see Table 1.

Response

variable

R2Adjusted
R2

Independent
variables

Estimate SE tStat pValue Partial corr.
coeff.

pValue Relative
importance

metric

Rank of
importance

r for VCI vs.
SPI-3 (crop)

0.4 0.39 (Intercept) 0.35 0.00 84.7 0.00E+00

T 0.07 0.00 15.15 2.12E-47 0.37 6.76E-38 0.13 1
P −0.04 0.01 −7.08 2.5E-12 −0.21 1.59E-12 0.12 2

LON 0.07 0.01 12.85 2.07E-35 0.36 7.14E-36 0.09 3
A 0.03 0.01 6.65 4.39E-11 0.19 3.48E-11 0.03 4

CA 0.01 0.00 2.58 1.00E-02 0.08 7.79E-03 0.03 5
IA n.s. n.s. n.s. n.s. −0.05 7.89E-02 n.s. n.s.

SX n.s. n.s. n.s. n.s. −0.05 8.14E-02 n.s. n.s.

r for VCI vs.
SPEI-3 (crop)

0.46 0.46 (Intercept) 0.34 0.0081.84E+00 0.00

T 0.10 0.00 18.52 1.77E-73 0.45 1.88E-57 0.17 1
P 0.10 0.01 18.07 2.06E-64 0.47 5.06E-65 0.15 2

LON −0.03 0.00 −5.44 6.49E-08 −0.13 7.56E-06 0.10 3
A 0.05 0.01 8.76 6.75E-18 0.26 1.61E-18 0.04 4

CA n.s. n.s. n.s. n.s. 0.05 7.36E-02 n.s. n.s.

IA n.s. n.s. n.s. n.s. −0.06 4.38E-02 n.s. n.s.

SX n.s. n.s. n.s. n.s. −0.06 4.67E-02 n.s. n.s.

n = 1148 (number of NUTS3 regions with complete data).

n.s. = independent variables were not selected by stepwise fitr.

of one month the correlation is notably lower and often
non-significant. For accumulation periods longer than
three or four months the correlation slightly decreases
for most NUTS3 regions. Differences between SPI
and SPEI are small. For most of central and north-
ernEurope the best correlated meteorological indicator
with VCI representing crop area is SPI-3 or SPI-4;
whereas it is SPEI-2 and SPEI-3 for most of southern
Europe (figure 3 bottom left panel). The strength
of correlations varies significantly with southern and
eastern Europe tending to have higher values than cen-
tral and northern Europe. Compared to the rest of
Europe, the northwestern UK and parts of Ireland
and the Alps stand out through showing very low,
zero, or slightly negative correlations.

For forest, similar spatial patterns of correlation
are found but the strength is predominantly lower
compared to crop (figure 3 right panels). For short
accumulation periods of SPI and SPEI, there is a
significant negative correlation for Ireland, the north-
western UK, western Scandinavia and for parts of
the Alps and Pyrenees. In contrast to crops, there is
more diversity in the best correlated meteorological
indicators for forest with a clear shift towards longer
SPI or SPEI accumulation periods for many NUTS3
regions.

For VHI, the correlations patterns show simi-
larities to those of VCI. However, the patterns are
smoother overall, have less pronounced spatial dif-
ferences, generally higher correlations (especially for
accumulation periods of one and two months), hardly
any non-significant correlations, and no negative cor-
relations (figure S1 in supplementary material). The
best correlated meteorological indicators are SPEI-1
or SPEI-2 for almost the entirety of Europe (both
for crop and forest). This is not surprising since
temperature is contained in both the VHI and the
SPEI.

To investigate whether geographical variables
explain spatial patterns of correlation we selected the
indicator combination VCI versus SPI-3 or SPEI-3
(table 2). The stepwise multiple linear regression model
revealed that 40% of the variance can be explained
by the independent variables T, P, LON, A, and CA
(table 1). Mean annual temperature and precipitation
totals are the two most important variables. Opposite
signs of the coefficients indicate a higher correlation
with increase in temperature and a decrease in precip-
itation across Europe. At higher latitudes, r decreases,
which matches well the observations of zero or negative
correlation for NUTS3 regions located in the west-
ern coastal UK and Scandinavia. Spatial patterns of
r between VCI and SPEI-3 for crop are similar to the
general observations with a slightly higher percentage
of variance explained (46%). Results for forest follow
the same general patterns with slightly lower percentage
of variance explained than for crop (not shown).

Finally, the correlation between VIs and corn yield
departure for Germany based on 16 years of annual
data revealed a maximum strength of correlation of
0.93 (see figure S2 in supplementary material). Over-
all, clear spatial differences are discernible, with higher
correlations in the northeast, central, and southeast-
ern parts of Germany (figure 4). The correlation
of corn yield departure with VCI is slightly higher
than with VHI for most regions. Note that for other
crops (not shown) this pattern of slightly higher
correlation with VCI is not always found, and also
depends on which annual variable of the VIs is used.

Discussion

The correlation analysis revealed that in many parts
of Europe, especially in southern and eastern Europe,
there is a high correlation between meteorological
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Figure 4. Correlation between VCI or VHI and corn yield departure (top two panels). Bottom panels: indicator with higher correlation;
fraction of corn cultivation area in year 2010.

indicators and remotely sensed VIs. There, especially
SPEI-3 and SPEI-4 are well linked to vegetation condi-
tions, confirming previous studies and current practice
in existing drought information systems displaying
these indices. Drought M&EW systems in these regions
may therefore be able to reasonably capture vegetation
stress using an indicator based on a precipitation or
water balance deficit only. However, we reveal that the
wettest and colder parts of Europe (northwestern parts
of the UK and Scandinavia, and the Alps) display no
or negative correlations between VCI and short accu-
mulation periods of SPI and SPEI, especially for forest.
These findings suggest that relying solely on meteoro-
logical indicators for agricultural or silvicultural risk
assessment in these regions might be inadequate, and
short precipitation deficit could actually be beneficial
for vegetation growth through increased radiation.

Regarding the best correlated meteorological indi-
cator with VCI in central and northern Europe

(SPI-3 or SPI-4) versus Southern Europe (SPEI-2 and
SPEI-3), the observed results were to be expected, as
southern areas have a high evaporative demand which
aggravates the effect of precipitationdeficit. SPEI incor-
porates the effect of the evaporative demand through
PET. In colder and radiation limited areas, the effect
of PET is marginal, therefore SPI which is linked to
precipitation deficit, is better correlated to VIs.

Looking more specifically to southern and eastern
Spain (especially for crops), we found high corre-
lation of VCI with long accumulation period (SPI
or SPEI) (figure 4, bottom left). This observation is
counter-intuitive at first, because this is one of the
most water limited areas in Europe and we would
expect a lack of water to have an immediate effect on
crops. It is also surprising that Andalusia (most south-
ern region of Spanish Peninsula), which has extremely
high evaporative demand, is better correlated with SPI
thanSPEI. However, southernSpain’s agriculture relies

7
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heavily on irrigation, which explains why VIs are bet-
ter correlated with long accumulation periods, and
also why the evaporative demand effect is masked in
some cases; crops only start to suffer when there is no
water left for irrigation. This also confirms conclusions
from Stagge et al (2015) who found that longer time
scales are more suitable in European countries where
agriculture relies on reservoirs and groundwater.

The linear regression between geographical vari-
ables and spatial patterns of strength of correlation
demonstrated that climate explains a considerable part
of the total variance. High temperature and low pre-
cipitation increase the strength of that correlation.
These results are in line with literature. Several stud-
ies have reported a closer link between meteorological
drought indicators and VIs or crop yield for climat-
ically drier and warmer areas than for wet, energy
limited ones (Karnieli et al 2006, López-Lozano et al
2015, Peled et al 2010, Quiring and Ganesh 2010,
Vicente-Serrano 2007). It is somehow surprising that
IA was not found to be a significant explanatory
variable for the correlations. This might be partially
explained by an inaccurate value of IA in official fig-
ures. In the case of Spain, some reports suggest that
there are between 0.5 (MMA 2000, WWF 2006) and
2 million illegal wells (Fornés et al 2005, Llamas et
al 2001), which would mean that between 20% and
90% of all the water wells in Spain are not registered
(Hernández-Mora et al 2010).

Our findings on differences between VCI and
VHI for some northwestern areas of Europe, and the
Alps, also match with the findings of Karnieli et al
(2010). They investigated the relation between LST
and NDVI over a wide range of moisture and climatic
regimes in North America and conclude that the com-
monly assumednegativeLST—NDVI relationdoes not
hold true for radiation limited environments. In such
regions, indicators based on a negative LST—NDVI
correlation assumption, such as the VHI, may be mis-
leading and need to be used with caution (Karnieli
et al 2010, 2006). The way we calculated VHI for
this study is a standard approach. However, a spatially
variable contribution of TCI and VCI to VHI rather
than a constant contribution, and a positive correla-
tion assumption between LST and vegetation health
may be more appropriate for VHI calculation for the
wet and energy limited regions of Europe.

Interestingly, similar studies for the US northern
Great Plains and Texas found a larger influence of soil
textural properties such as total available water con-
tent on the correlationbetweenmeteorological drought
indicators and VIs (Ji and Peters 2003, Quiring and
Ganesh 2010). The low explanatory power of soil tex-
ture in our study likely results from the relatively
coarse soil texture classes we applied (due to data avail-
ability). More detailed information on soil properties
and management practices could provide additional
explanatory power. Nevertheless, the spatial aggrega-
tion at the NUTS3 region level, without differentiating

between specific crop or forest types, inevitably brings
some noise into the relationship between meteorolog-
ical indicators and vegetation stress.

VHI is generally considered capable of identify-
ing early signs of heat related vegetation stress (Kogan
1997) and therefore may be superior to VCI regard-
ing crop yield predictions. We also assessed how VCI
and VHI relate to crop yield in Germany. Our analy-
sis based on corn yield departure did not confirm the
superiority of VHI; VCI was for most regions slightly
better correlated. On the one hand this may be due to
an unknown real contribution of VCI and TCI to VHI.
On the other hand, a more detailed analysis would
need to be conducted to fully test the performance
of VCI versus VHI, e.g. by considering VI values of
smaller time windows than monthly data (e.g. Bolton
and Friedl 2013, Lobell et al 2015, López-Lozano et al
2015). Complexities also arise from the absence of a
high-resolution crop-specific cultivation map for Ger-
many, and the temporal variation of cultivation area
that would need to be accounted for. At the same time,
it needs to be pointed out that VIs and crop yield are
affected by multiple hazards and management practices
and changes are thus not solely attributable to drought.
Further information on drought-specific impacts on
vegetation, e.g. as present in the European Drought
Impact report Inventory (Stahl et al 2016), could serve
as additional information for assessing the meaning-
fulness of VCI versus VHI. Nevertheless, the spatial
resolution of the data in the EDII and biases in its spa-
tial coverage currently precludes a detailed analysis at
the NUTS3 region level.

Conclusion

The details of links between commonly used mete-
orological drought indicators and remotely sensed
vegetation stress at the pan-European scale allow us
to make several suggestions to move towards a more
impact-oriented drought monitoring and early warn-
ing. While a monitoring of SPI and SPEI of two to
four months accumulation period as commonly imple-
mented through the SPI-3 will indeed best be linked to
crop vegetation stress; for forest, often longer accu-
mulation periods of SPI and SPEI will be required.
Secondly, regional differences in our results suggest a
generally higher potential for meteorological indices to
indicate vegetation drought impacts in southern and
eastern Europe than in central and northern Europe.
Among the indices SPEI may be a slightly better
index in southern and eastern Europe, whereas for
the rest of Europe SPI appears to be slightly better.
These details suggest that the potential of skilled users
to capitalize on drought index information for risk
management in their administrative region could be
improved by providing background maps where these
indices were shown to have been correlated with a
certain vegetation stress. Users could then customize
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their information themselves or use it to build their
own regional system.

The northwestern regions in the UK, Scandinavia,
and in the Alps with no or a negative relation between
VCI and short accumulation periods of SPI or SPEI
certainly require different indices to indicate drought
impacts. VHI, a combined index based on vegeta-
tion condition and temperature, did not show negative
correlations with SPI or SPEI for the above regions.
We confirm that a negative relation between LST and
NDVI for calculating VHI may not be assumed for the
wet, energy-limited regions in Europe. Europe’s cli-
mate and geography hence partly explains the observed
spatial patterns of correlation and in climatically drier
areas, meteorological indicators may be representative
for drought M&EW and hazard analysis. For wetter
and colder parts of Europe, however, solely relying
on SPI or SPEI for silvicultural or agricultural risk
assessment will be inadequate. From a pan-European
drought information mapping point of view, our
analysis therefore suggests that some regions should
better be blanked out or at least marked as showing no
link to drought impact on vegetation. In practice, this
confirms previous suggestions for more sector-specific
M&EW information.

Closing the circle from meteorological to agricul-
tural drought by evaluating remotely sensed VIs with
on-the-ground information on vegetation health and
agricultural/silvicultural impacts proved a necessary
additional step that requires further pursuit. Due to
data limitations, we explored the link between VCI or
VHI and corn yield departure only for one example
country (Germany) and found high correlations (up
to 0.9) for certain regions, but also spatial variability.
These results suggest that it is worthwhile for adminis-
trative regions to collect and provide such information
for research that can help customize the use of partic-
ular drought information. Overall, such information
on the link between multiple layers of drought infor-
mation may help to further downscale the current
monitoring to improve local to regional drought early
warning capacity and risk assessment for longer term
planning. This would benefit a range of stakeholders
such as farmers and growers, agricultural planners and
financiers, and environmental managers and regula-
tors. From a research perspective, this can provide a
methodological template for similar ‘indicator-impact’
studies at continental scale. More generally, it advances
the science in this area of testing drought indicators
to provide ‘ground-truth’ i.e. verification that these
indicators provide meaningful information on likely
societal/environmental impacts rather than just mete-
orological status.
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